Stability analysis of Hopfield neural networks with uncertainty
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Lmi Approach to Robust Stability Analysis of Hopfield Neural Networks
The robust stability of a class of Hopfield neural networks with multiple delays and parameter perturbations is analysed. The sufficient conditions for the global robust stability of equilibrium point are given by way of constructing a suitable Lyapunov-Krasovskii functional. The conditions take the form of linear matrix inequality (LMI), so they are computationally efficient. In addition, the ...
متن کاملConvergence Analysis of Hopfield Neural Networks
84 Abstract—In this paper, we analyze the convergence and stability properties of Hopfield Neural Networks (HNN). The global convergence and asymptotic stability of HNN have successful various applications in computing and optimization problems. After determining the mathematical model of the network, we do some analysis on the model. This analysis base on Lyapunov Stability Theorem. Firstly, w...
متن کاملStability Analysis of Discrete Hopfield Neural Networks with the Nonnegative Definite Monotone Increasing Weight Function Matrix
The original Hopfield neural networks model is adapted so that the weights of the resulting network are time varying. In this paper, the Discrete Hopfield neural networks with weight function matrix DHNNWFM the weight changes with time, are considered, and the stability of DHNNWFM is analyzed. Combined with the Lyapunov function, we obtain some important results that if weight function matrix W...
متن کاملStability analysis for delayed high-order type of Hopfield neural networks with impulses
This paper can be regarded as the continuation of the work of the authors contained in papers (2015). At the same time, it represents the extension of the papers Lou and Cui (2007, [24]), Sannay (2007, [34]) and Acka et al. (2004, [1]). This work discusses a generalized model of high-order Hopfield-type neural networks with time-varying delays. By utilizing Lyapunov functional method and the li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2001
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(01)00067-x